Inter-reader Reliability of Programmed Death Ligand-1 (PD-L1) Scoring Using the VENTANA PD-L1
(SP263) Assay in Non-Small Cell Lung Cancer (NSCLC)

Gareth H. Williams1, Andrew G. Nicholson2, David R. J. Sneed3, Erik Thunnissen4, Sylvie Lantuejoul5, Paul Cane6, Keith M. Kerr7, Marco Loddo8, Marietta L. Scott8, Paul W. Scorci4, Craig Baker9

1Oncologica UK Ltd., Cambridge, UK; 2Royal Brompton and Harefield NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, UK; 3University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; 4VU University Medical Center, Amsterdam, The Netherlands; 5Centre Léon Bérard UNICANCER and Grenoble Alpes University, Lyon, France; 6Guy’s and St Thomas’ NHS Foundation Trust, London, UK; 7Aberdeen University Medical School and Aberdeen Royal Infirmary, Aberdeen, UK; 8Precision Medicine Laboratories, Precision Medicine and Genomics, IMED Biotech Unit, Astrazeneca, Cambridge, UK

Background

• Significant repositioning is targeting the immune checkpoint programmed cell death-1 (PD-1) programmed cell death-1 (PD-1) pathway for the treatment of patients with various cancers, including non-small cell lung cancer (NSCLC) and oesophageal adenocarcinoma (EAC).
• Clinical data from multiple studies across several indications have demonstrated that PD-L1 expression levels can be used to select patients for treatment with anti-PD-L1 agents.
• The VENTANA PD-L1 (SP263) Assay is an immunohistochemical diagnostic assay for anti-PD-L1 immune checkpoint inhibition.
• It is approved by the US FDA as a complementary diagnostic for NSCLC.

Methods

• Six expert pulmonary pathologists from different European sites independently scored 520 NSCLC tumour samples using the VENTANA PD-L1 (SP263) Assay.
• Statistical analyses were performed using STATA 13.1 (StataCorp, Texas, USA).
• Agreement between pathologists was determined by two observers - each observer scored 250 tumour samples.

Results

Table 1. Overall agreement between pathologists for PD-L1 TC scores across cutoffs

| PD-L1 cut-off | OPA | GPA | OA | ACA | RR
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TC ≥1%</td>
<td>98.5% (98.5–99.1)</td>
<td>98.5% (98.3–99.1)</td>
<td>99.0% (98.8–99.2)</td>
<td>99.0% (98.8–99.2)</td>
<td></td>
</tr>
<tr>
<td>TC ≥25%</td>
<td>95.0% (94.3–95.8)</td>
<td>95.0% (94.3–95.8)</td>
<td>95.0% (94.3–95.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC ≥50%</td>
<td>94.3% (93.5–95.2)</td>
<td>94.3% (93.5–95.2)</td>
<td>94.3% (93.5–95.2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. ICC for reliability of scores between pathologists

Class	ICC (95% CI)	Interpretation lower bound
OPA	0.89 (0.87–0.91)	Excellent
GPA	0.81 (0.78–0.84)	Good
OA	0.78 (0.75–0.80)	Good
ACA	0.76 (0.73–0.79)	Good
RR	0.75 (0.72–0.78)	Good

Table 3. ICC for reliability of scores between pathologists for PD-L1 IC scores across cutoffs

| IC cut-off | OPA | GPA | OA | ACA | RR
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC ≥5%</td>
<td>92.5% (92.1–92.9)</td>
<td>92.5% (92.1–92.9)</td>
<td>93.0% (92.6–93.4)</td>
<td>93.0% (92.6–93.4)</td>
<td></td>
</tr>
<tr>
<td>IC ≥25%</td>
<td>90.0% (89.3–90.7)</td>
<td>90.0% (89.3–90.7)</td>
<td>90.0% (89.3–90.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC ≥50%</td>
<td>88.3% (87.5–89.1)</td>
<td>88.3% (87.5–89.1)</td>
<td>88.3% (87.5–89.1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

• Assessment of IC scores by expert pathologists was highly reproducible in NSCLC tumour samples using the VENTANA PD-L1 (SP263) Assay, building confidence in the performance of this assay in patient selection for anti-PD-L1 therapy.
• PD-L1 staining on ICs is not included in the assays that aim to identify patients eligible for immuno-oncology monotherapy treatment in NSCLC.
• PIC and IC scoring were not reproducible in NSCLC tumour samples, suggesting that the assay methodology is unsuitable for this tumour type and assay.
• The results for NSCLC are in contrast with those for UC, where inter-laboratory reproducibility studies have shown strong agreement in both TC and IC scoring.
• Further studies are required to investigate this difference in the pathology of tumour types.

References

9. Copies of this poster obtained through QR (Quick Response) and/or text key codes are for further reading and discussion, and should be used in conjunction with the original publication. AstraZeneca does not accept responsibility for any errors or omissions in such copies. Legal restrictions may apply to some or all portions of this document. This is a summary of a poster and should not be substituted for the original publication.